/ Articles / Infrastructure Outlook: Power Distribution Networks Must Perfect Data Quality and Governance

Infrastructure Outlook: Power Distribution Networks Must Perfect Data Quality and Governance

Sunil Kotagiri on February 26, 2020 - in Articles, Column

The electric utility industry is undergoing a major transformation driven by new sources of energy generation (solar and wind power), consumer demand for faster and more-affordable services, cybersecurity, and Big Data. Gathering data to harvest insights and forecast more accurately offers a significant potential to optimize the way utilities operate. Emerging modern grids demand accurate data and as-operated network information to function optimally. Given these business imperatives, utilities must overcome current constraints and limitations to enable essential operations data quality.

High-quality data enable a utility to understand network and asset behavior, operating conditions, and their effects on customer service. Electric networks change routinely, and operations reflect a dynamic condition. Therefore, quality data must be regularly assessed based on their context of use.

The utility network must enable accurate measurements of network behavior to ensure accurate observations and the ability to optimize measures in response to current and accurate data. The ability to ensure correct inputs from system and operations data enables the utility to substantially improve the quality and cost efficiency of its operations.

Missing Information

Many utilities are missing key information about their assets, because the underlying infrastructure for utility networks used today was deployed decades ago when recording data wasn’t critical to business. To make up for this limitation, operators can leverage newly gathered records that come from smart meters and other sources.

Extracting real value from utility data, however, requires a data-driven operation and a data ecosystem that can underpin processes, systems and people as well as create an as-operated paradigm as opposed to an as-designed model.

Utilities generate substantial volumes of data, and while the Internet of Things (IoT) proliferates across networks—thanks to smart devices—it creates multiple new data points that can put pressure on infrastructure. BI Intelligence estimates that the global installed base of smart meters will increase from 450 million in 2015 to 930 million in 2020. On top of this, distributed energy resources (DER) and legacy IT systems bring fresh challenges to utilities having to manage and interpret greater volumes of information. For example, thousands of mini-generation plants can sit all over the network, bringing in new data points every minute. A system is therefore required to gather and maintain multiple sources of data.

Unifying Data

Another principal challenge for energy network operators lies in ascertaining a single source of dependable information from the data gathered. Most of these records remain siloed in multiple files and IT systems, and therefore need to be unified.

To consolidate data, they must be segregated from the set-ups where they’re stored. This also is necessary because the fast pace of development in the power sector implies that the lifespan of discrete IT systems may become shorter through time. Data should be able to move seamlessly between traditional and modern systems.

The modern grid enables the utility to react quickly and effectively in a complex and demanding environment. To enable this intelligence, it’s imperative to harmonize data with actual operating conditions. Creating this harmony between data and as-is or as-switched conditions requires an Intelligent Data Management Solution to align utility process and system data. Finding the right model and system to align this data is the first step to obtaining high-quality, actionable data and improving modern grid services quality.

GIS has transformed into data centers that can be customized in several ways based on the purpose for which they’re needed. They also can be used to prioritize power projects and bundle different projects together for more cost-effective work.

Furthermore, the outlook of network operators to data sharing must shift from “need to know” basis to a presumption of disclosure. In particular, there should be more data sharing among gas and electricity networks.

Proper Data Collection

Although the value of data for network operators is understandable, it’s also essential to collect data in the right ways. If collection moves effectively from the earliest stage, common problems can be prevented. There have been cases where network operators amassed volumes of data that were never actually utilized—such attempts only result in wasted time and resources. Therefore, data must always be gathered for a specific purpose and not just for the sake of record keeping.

On the other hand, some operators feel that if they get too selective in the data-gathering process, it can throttle innovation, because there are several upcoming uses of data. By also consulting stakeholders, operators can accommodate the data needs of others instead of just acting by their objectives.

In addition, as utility departments are getting reshuffled to facilitate more collaboration among asset managers and data organizers, data-driven transformation for networks needs to be intensified with the judicious deployment of data-validation tools.

 

Sunil Kotagiri

About Sunil Kotagiri

Sunil Kotagiri is deputy general manager, U&G BU, Cyient; email: utilities@cyient.com.

Comments are disabled