

Professional Development Series INFRASTRUCTURE

www.informedinfrastructure.com/v1education

YOUR WEBCAST WILL BEGIN SOON

Hosted by:

INFORMED INFORMED INFRASTRUCTURE The magazine for civil & structural engineers

Sponsored by:

Presented by:

What You Need to Know About Helical Piles, Capacities and Applications

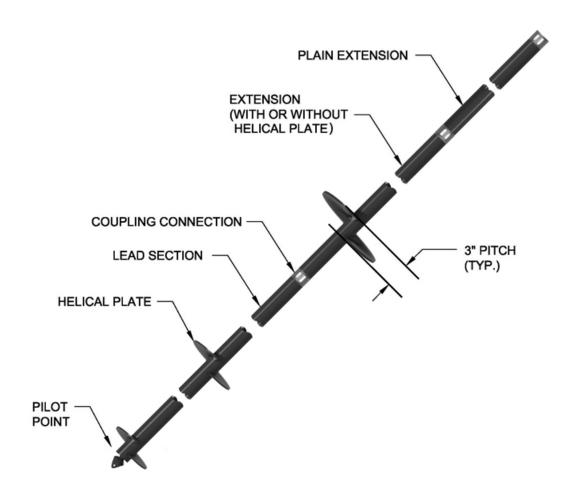
November 30, 2023

AIA Approved Continuing Education

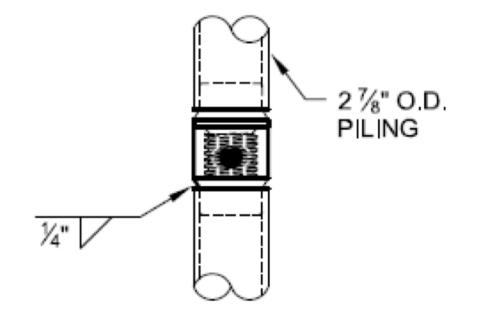
Introduction

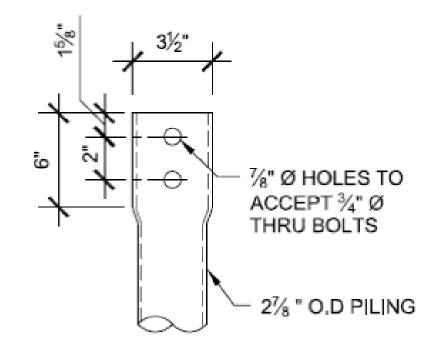
Dr. Ranjith (Sam) Rosenberk, Ph.D., P.E. Vice President Fortified Engineering Solutions, LLC

Helical Piles, Capacities, and Applications


Sam Rosenberk, Ph.D., P.E.

٠


Common Helical Piles/Anchors Components



Helical Pile Connections

Threaded Connection

Upset Connection

Helical System

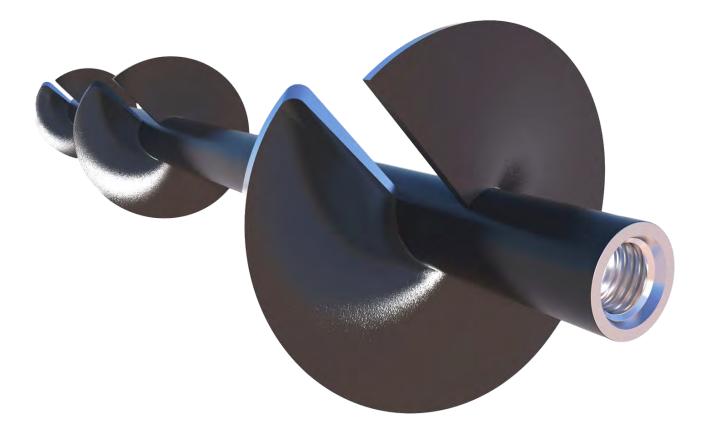
PATENTED THREADED CONNECTION

Provides the strongest, most rigid connection in the industry. Has zero slop or eccentricity that would increase buckling stresses on the pile shaft during loading.

The smooth connection keeps soil disturbance at a minimum.

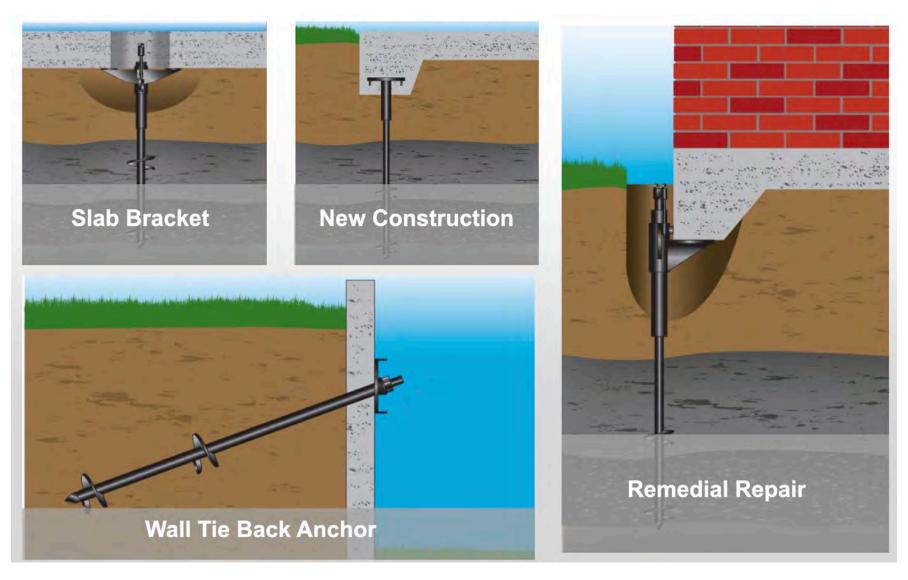
The smooth connection also allows for the use of guide sleeves, increasing the moment capacity of the pile. These can be installed in almost any length when upper soils are too soft to provide adequate lateral bracing.

RECOGNIZED BY: IN ESR-1854


Helical System

Helix plates are pressed into true spiral shape so they can be torqued into the soil smoothly with minimal soil disturbance Twist tip to help pile penetrate hard soil

Helical System


Installation Machines

Helical Applications

Additional Applications

Ram Jack's thermoplastic coating prevents rust and zinc from leaching into the ground water. Making it ideal for environmentally sensitive areas.

√ Boardwalks √Pedestrian Bridges √Tower / Guy Anchors √Green Energy √Light Poles √Sign Supports √Pipelines ✓ Beach Front Properties √ Bulkheads Endless Applications ...

Helical Pile / Anchor System

Benefits :

- \checkmark Can be customized to meet capacity requirements
- \checkmark Can be used in tension or compression
- ✓ Quality assurance during installation (monitoring torque)
- \checkmark Does not require structure for reaction resistance
- $\checkmark\,$ No drilling spoils during installation
- \checkmark No vibration during installation
- \checkmark Instant Pile (can be loaded immediately)
- \checkmark Adaptable to almost any foundation
- \checkmark No welding in the field
- $\checkmark\,$ Fast, efficient installation in any weather

Helical Design & Theory

Helical Historical Perspective

 1st recorded use of helical piles was by Alexander Mitchell in 1836 for Moorings and was then used by Mitchell in 1838 to support Maplin Sands Lighthouse in England.

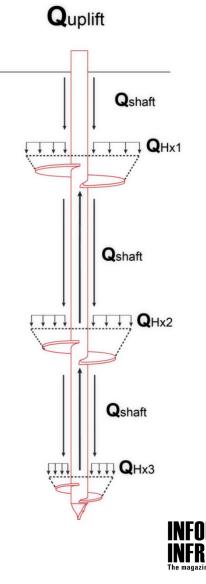
 In the 1840's and 50's, more than 100 helical foundation lighthouses were constructed along the East Coast, Florida Coast & the Gulf of Mexico.

 Through advancements in installation equipment, geometries & research, helical foundations are now used throughout the world.

Pile & Anchor Capacity

Design Considerations

- Pile Capacity
 - Individual bearing method
 - Torque correlation
 - Load tests
- Acceptance Criteria for Helical Piles (AC358)
- Building Code Compliance
- Pile Spacing



Individual Bearing Method

- Total capacity is the sum of the bearing resistance of each helix
- Capacity due to friction along shaft is generally assumed negligible and normally omitted

*Terzaghi Bearing Equation $Q_u = A_h q_u = \sum A_h (cN_c + q_v N_q)$ $A_h = helix plate area$ c = soil cohesion $q_v = overburden stress$ $N_c \& N_v = Meyerhof bearing factors$

Torque Correlation Method

The torque required to install a pile or anchor is empirically and theoretically related to ultimate capacity

$$Q_{ult} = K_t(T)$$

T = torque [ft-lb]

 $K_t = helix torque factor [ft-1]$

- default value = 10 for 2 3/8" diameter
- default value = 9 for 2 7/8" diameter
- *default value* = 7 for 3 1/2" *diameter*
- default value = 6 for 4 1/2" diameter

*K_t ranges from 3 to 20 – Recommended default values are listed but can only be accurately determined from a load test.

Load Testing

Compression Test: ASTM 1143

Tension Test: ASTM 3689

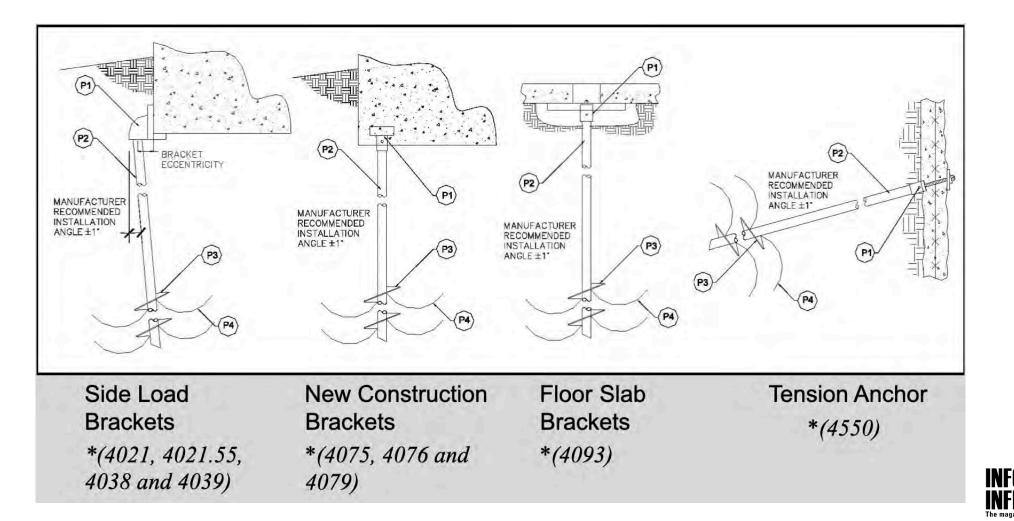
Lateral Test: ASTM 3966

Acceptance Criteria for Helical Pile Systems and Devices (AC358)

AC358 Acceptance Criteria

Acceptance Criteria for Helical Foundation Systems (AC 358)

- Approved June 2007
- Revised June 2013
- Set industry standard
- Higher quality & reliability
- Requires extensive testing & comprehensive calculations
- Ram Jack is 1st helical manuf. to receive ESR
- ESR-1854 issued on February 1, 2011



AC358 Acceptance Criteria

Applications covered under AC-358

AC358 Acceptance Criteria

AC358 requires (4) Structural Elements to be Evaluated for Each Application

- P1 Bracket Capacity
- P2 Pile Shaft Capacity
- P3 Helix Plate Capacity
- P4 Soil Capacity

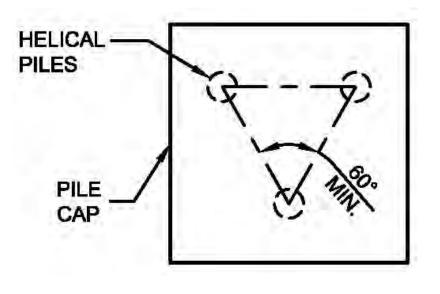
Note: The capacity from the lowest element controls the capacity of the system.

Key Sections of the Code that affect the Capacity of a Helical Pile

- Section 1810.2.2 Stability
- Section 1810.2.1 Lateral Support
- Section 1810.3.3.1.9 Helical Piles

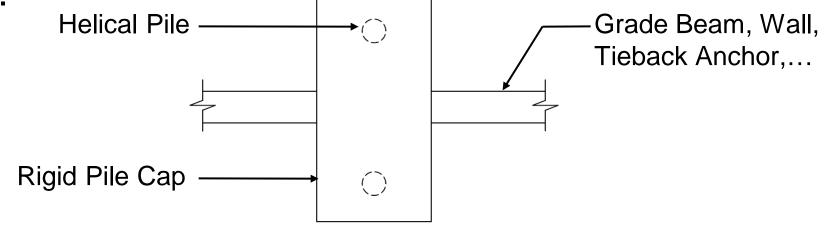
Section 1810.2.2 - Stability

"Deep foundation elements shall be braced to provide lateral stability in all directions."


The Section goes on to describe the situations where a foundation element can be considered as a 'braced system'.

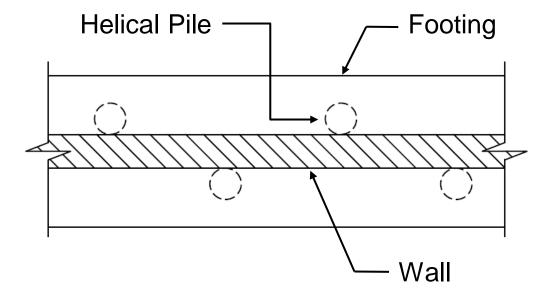
Section 1810.2.2 - Stability

1) Three or more piles connected by a rigid cap provided the piles are located in radial directions from the centroid of the group not less than 60 degrees apart.



Section 1810.2.2 - Stability

2) A two pile group connected by a rigid cap can be considered braced along the axis connecting the two piles. A wall or grade beam would have to be connected perpendicular to the cap.



Section 1810.2.2 - Stability

 Piles supporting walls shall be staggered on each side of the wall at least 1-foot apart and located symmetrically under the center of gravity of the wall.

Example of braced piles supporting a wall (new construction):

Section 1810.2.2 - Stability

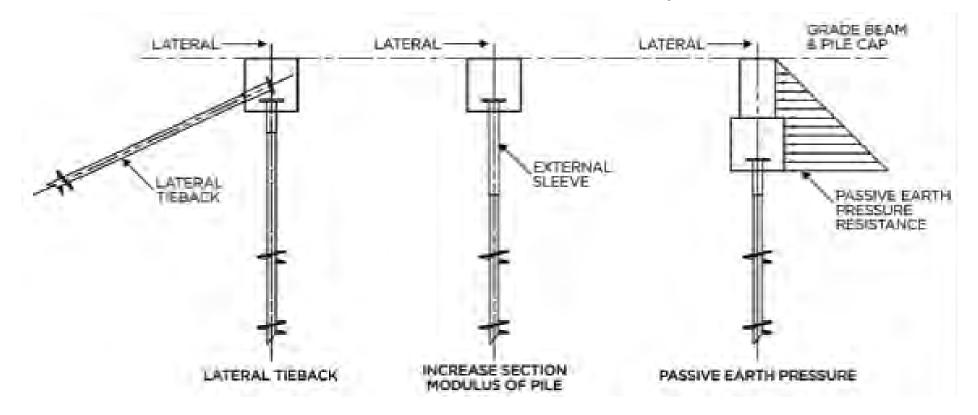
Exception:

A single row of piles is permitted without lateral bracing for one- and two- family dwellings and light construction not exceeding two-stories above grade or 35-feet, provided the center of the piles are located within the width of the supported wall.


Section 1810.2.2 - Stability

- Unless measures are taken to provide for:
- Eccentricity
- Lateral forces
- Piles to be adequately braced to provide lateral stability

Section 1810.2.2 - Stability


Rotational bracing of existing wall:

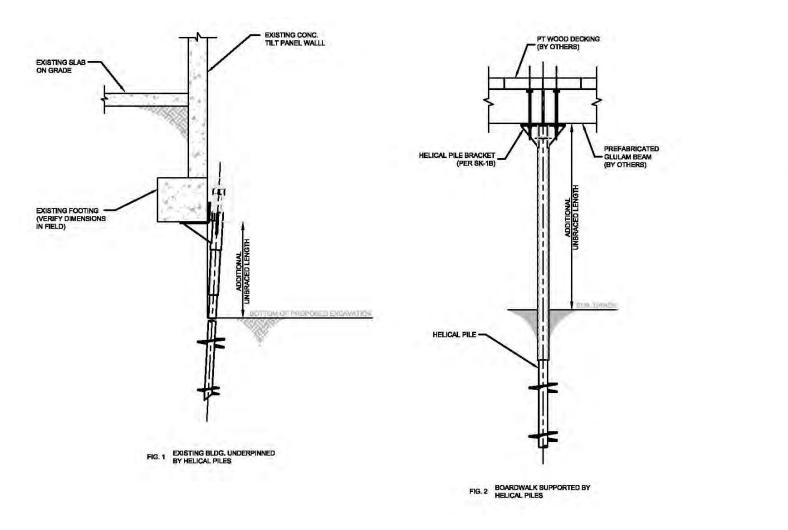
- On smaller structures, bracing can be achieved internally.
- Buckling capacity of pile shaft must also be checked.

Section 1810.2.2 - Stability

Machine Foundation (Battered Piles)

<u>Design Loads</u> 1,050 kip (4,670 kN) vertical 500 kip (2,224 kN) lateral

Section 1810.2.1 – Lateral Support


(Unbraced Piles)

- Piles standing in air, water or fluid soil shall be classified as columns and designed from the top to the point where adequate lateral support is provided. (*Section 1810.1.3*)
- Piles driven into firm soil (N-value > 5) are considered laterally braced 5-feet below grade.
- Piles driven into soft soil (N-value < 4) are considered laterally braced 10-feet below grade.

UNBRACED LENGTH - EXAMPLES

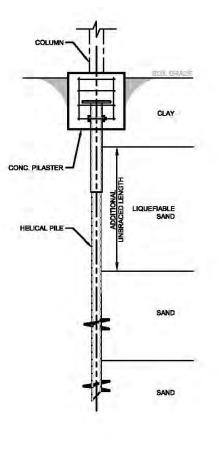
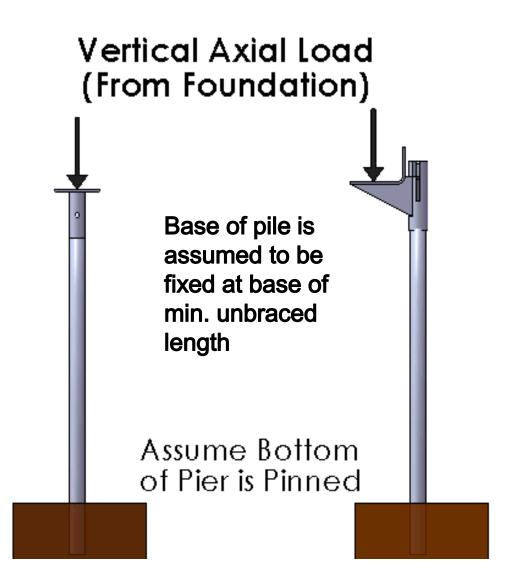
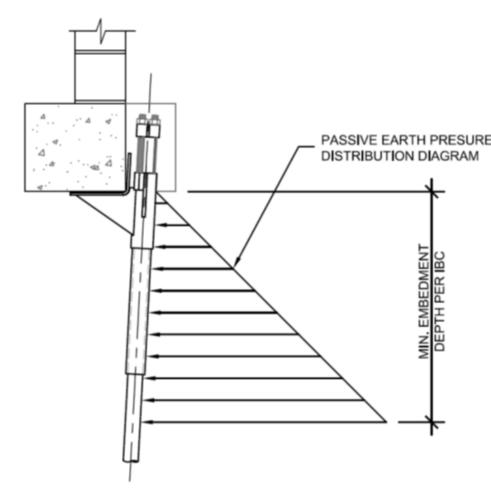
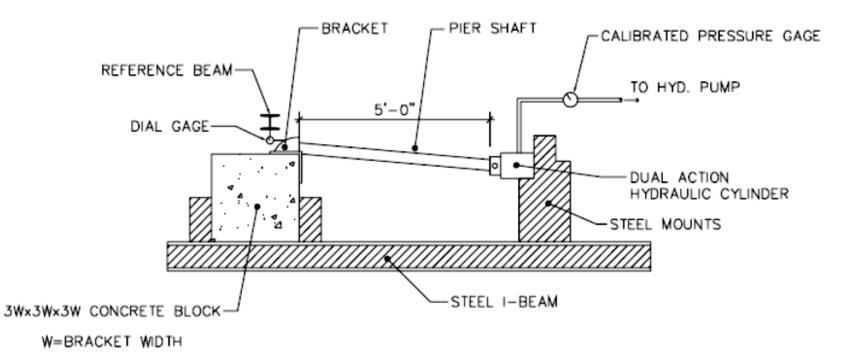



FIG. 2 HELICAL PILE THROUGH LIQUEFIABLE SOIL LAYER



Section 1810.2.1 – Lateral Support


- Passive earth pressure providing lateral buckling resistance has a triangular load distribution.
- Sufficient embedment is required before the appropriate resistance is reached.

Section 1810.2.1 – Lateral Support

Side Load Bracket Laboratory Test Set-up per AC358

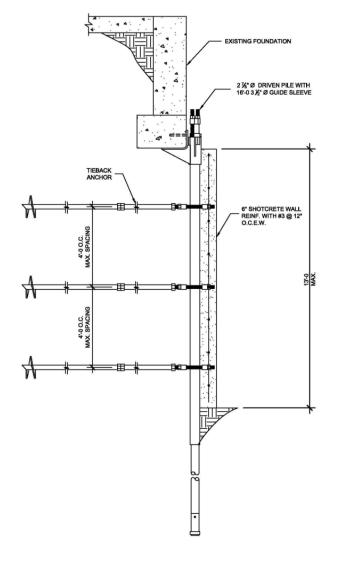
Section 1810.2.1 – Lateral Support

Example of braced piles supporting an existing wall:

Union County Vo-Tech

Scotch Plains, New Jersey

- New cafeteria addition
- Required 13'-0 excavation adjacent to existing bldg
- Loads
 - Column : 25 to 45 kips
 - Wall: 1.8 kips/ft



Union County Vo-Tech

Scotch Plains, New Jersey

- Due to the structural loads, driven piles were used to underpin the bldg.
- Driven piers were 2 7/8" dia. driven through a 16'-0 long 3 ½" dia. guide sleeve that would extend beyond the 13'-0 excavation
- Tieback anchors were used to provide lateral bracing
- 6" shotcrete wall was installed to contain the soil and moisture beneath the building

Union County Vo-Tech

Scotch Plains, New Jersey

Three layers of pile tiebacks were installed to provide lateral bracing

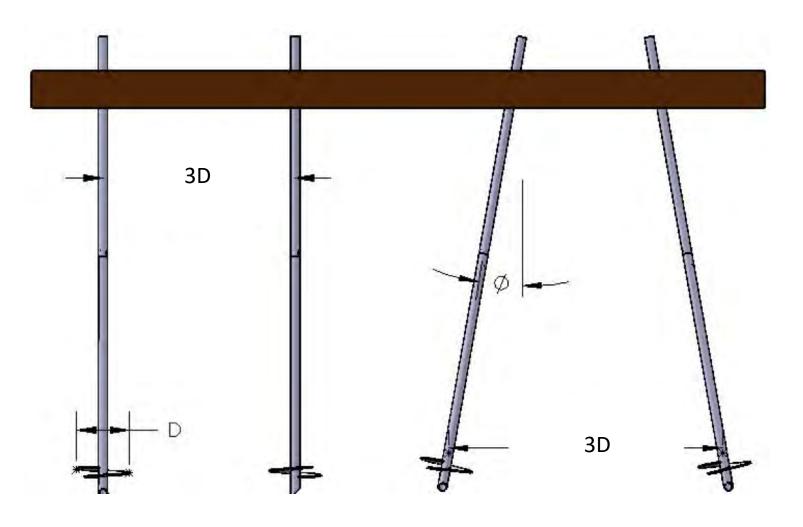
Once a layer of tiebacks were installed the site was excavated 5'-0

Union County Vo-Tech Scotch Plains, New Jersey

A reinforced 6" thick shotcrete wall was installed at each excavation layer

Union County Vo-Tech Scotch Plains, New Jersey

Completion of underpinning and basement wall


Group Efficiency Effects

- Group efficiency losses must be taken into account if piles are spaced too close.
- Piles are recommended to be spaced a minimum of 3 times the largest diameter helix to avoid group efficiency effects.
 (IBC and AC-358)

Group Efficiency Effects

Ram Jack Foundation Solutions[™] Software

Foundation Solutions[™]

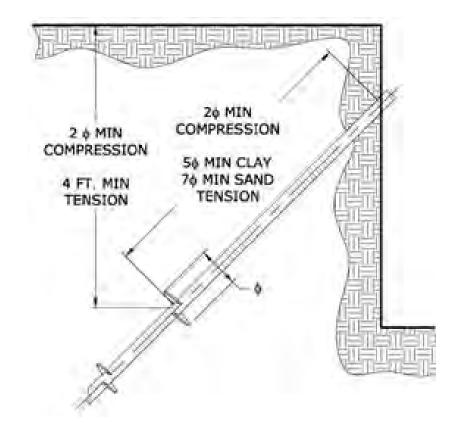
Helical Design Software

- Automatically estimates soil properties based on SPT "N" values
- One Data File Various Helical Applications
- Custom Pile Design
- Ult. Torsional Resistance & Ult. Axial Capacity
- Compression & Tension capacities
- Optimization Helical Pile Design

Foundation Solutions[™]

Helical Design Software

- Estimates the Required Approx. Embedment Depth and Installation Torque.
- Professional Output
- Web Based so Current Version is Always Available
- File Sharing
- Does <u>NOT</u> Calculate Buckling Stress



Foundation Solutions[™]

Helix Capacity

Capacity is calculated at 1'-0 intervals beginning at the recommended minimum embedment

Calculation Results

🖗 плиј/	ACK					oquest an E Engineer Po
		Logout	-		-	-
Graphical View	Anchor Result					
Tabular View	Size [3,500], Helix Configuration	on[10-12]				
Access to a family	-		Estimated Pile Capacity: Compression			
Download PDF	Helical Pile / Anchor I	nformatic	on:	Estimated Pile Capacity: Co	mpression	-
	Helical Pile/Anchor I Reg. Allowable Pile Capacity	informatio 40	kip	Estimated Pile Capacity: Co Allowable Frictional Resistance	mpression 7.99	kip
		STOLEN BOARD	weeks and the second			kip kip
Download PDF Back	Req. Allowable Pile Capacity	40	weeks and the second	Allowable Frictional Resistance	7.99	
	Req. Allowable Pile Capacity Applied Factor of Safety	40 2	kip	Allowable Frictional Resistance Allowable End Bearing Capactiy	7,99 32,01	kip

PDF Printout

Project Name Northwest Police Sub-Station **Project Address** 6000 Teague Road Houston,TX Analysis By Name : Darin Willis, P.E. Company : Ram Jack Systems Distribution, LLC. Email : dwillis@ramjack.com Job Information Project Type : Underpinning Pier / Project Number : Pile Specification : Size [2.875] / Helix Configuration : 10-12-14 **Client Information** Name : Brian Buchanan Email : Address : Ram Jack of Central & South Texas

Field Notes

PDF Printout

mit Sh		1.1	ptio	115									
	aft Re	sistance	e			Omit	Mechianical :	Strength Ch	iecks.	Omit Sha	ft Strength Ch	necks	
Soil	Info	orma	atio	n									
		iormed l	by:A &	R Engi	neen	ng and Tes	ting	100					
Boring Boring		nation D	epth. f	1					-		1	_	-
Depth (of Grou	und Wat	er Tab		ŝ.								
		pth,30ft Soil Typ		lesive									
		28						1			-		
Geom	netric	Data											
	1	2	3	4	5						-		
X	0	0	0	0	0	1							
Y						-							
		0 gle 9D(c sition 0	0	0	0	1							
Pile He	Pro	gle 90(c sition 0 file SPT B Cour	licow nt			Cohesion (psf)	Adhesion	Internal Friction Angle	Friction Co-efficient	Moist Unit Weight	Sat Unit Weight	Nc	Ng
Soil	PTO	gle 9D(d sition 0 file spтв	licew nt	0	r			Friction			Sat Unit Weight (pet) 110	Nc	Ng

PDF Printout

RAMJACK FOUNDATION SOLUTIONS M

Helical Pile/Anchor Information:

Req. Allowable Pile Capacity :	28	kip	
Applied Factor of Safety	2		
Helical Pile Diameter	2.875	in	
Helix Configuration	10-12-14	in	
Torque Correlation Factor	9	lbs/ft-lbs	

Pile Capacity Theory

End Beatine $q_{\rm M} = cN_{\rm e} + qN_{\rm g}$

9 . Uttimate End Bearing Capacity, pcf C - Cohesion, baf No & No - Bearing Capacity Facture q - Effective Vertical Stress, psf

Side Friction

 $f_s = a c + K \sigma_q$ 'tan δ

fs - ultimate capacity from skin friction a = Adhesion Factor c = cohesion, pat 00 = Effective Vertical Stress, par 6 - Angle of External Friction - 0.54 (#)

Allowable Frictional Resistance:

Allowable End Bearing Capacity:

Appr. Pile Embedment Depth:

Allowable Pile Capacity:

Estimated Pile Capacity:

Required Min. Installation Torque: 6,700 ft-lbs

11.67 kip

16.33 kip

28.0 kip

23.0 ft

Te	nsion Res	ults	Compression Results			
Embedm ent (ft)	Ultimate Anchor Capacity (lbs)	Torsinal Resistan ce (lb ft)	Embedine nt (ft)	Ultimate Anchor Capacity (IDS)	Torsina Resista e (ID ft)	
12	61624	8729	8	62348	7891	
3	60499	5511	9	59701	7343	
4	56252	5699	10	58575	7472	
5	53952	5725	11	54332	6600	
3	51900	3848	12	52332	0728	
7	52950	5970	13	50322	5511	
8	50876	1001	14	47989	3595	
	51900	6210	15	49030	5725	
And Inc.	52910	8208	16	50048	5949	
	53906	6441	17	51049	5970	
-	54891	8687	18	52040	6891	
	55863	8872	19	53019	6219	
1	56837	1764	20	53990	6325	
5	57809	6903	21	54964	6441	
6	58781	7010	22	55937	6557	
7	59753	7134	23	56909	6672	
8	60725	7080	24	57881	6788	
9	61698	7985	25	58852	6903	
1	62671	7.001	26	59826	7019	
	02071	1961	27	60798	7134	
			28	61770	7250	
			29	62743	7365	
			30	63715	7401	

Warning

Torsional resistance numbers in bold red font indicate calculated torsional resistance exceeds Ram Jack rating for the selected lead or extension shaft, whichever is less.

Additional Tools

www.RamJackEngineering.com

Access to:

- Design software
- Drawings
 - AutoCAD
 - PDF
- Specifications
- Product Catalog
- ESR Report

Manufacturing Facility

INFORMED INFRASTRUCTURE

Manufacturing Facility

Manufacturing Facility

State of the Art Manufacturing

Applications

ABENGOA SOLAR

Solana, the largest solar power plant in the world.

University of Arizona Medical Center

Phoenix, AZ

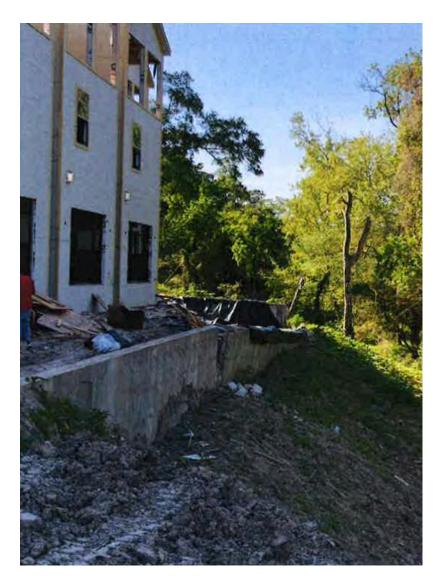
- Finished floor of main entrance to be lowered 4 feet
- All load bearing walls must be underpinned
- All wall footings were unreinforced
- Wall loads were as much as18 kip/ft
- Historic bldg. no work allowed on exterior

University of Arizona Medical Center

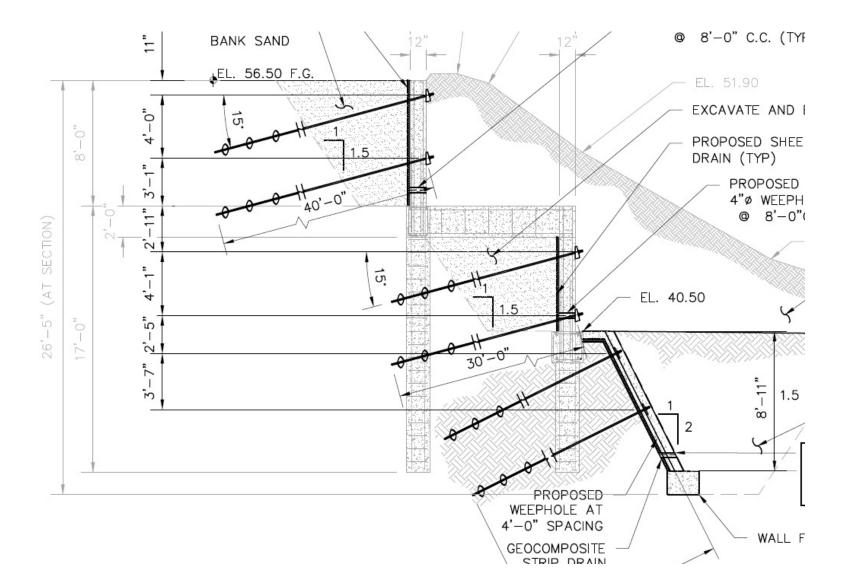
Phoenix, AZ

In order to address stability issues and prevent a torsional moment from being induced to the unreinforced footing, the piles were staggered on each side of the wall per the IBC. Driven piles with external sleeves were used to underpin the walls.

^{Approved} ^{Continuing} ^{Education} University of Arizona Medical Center

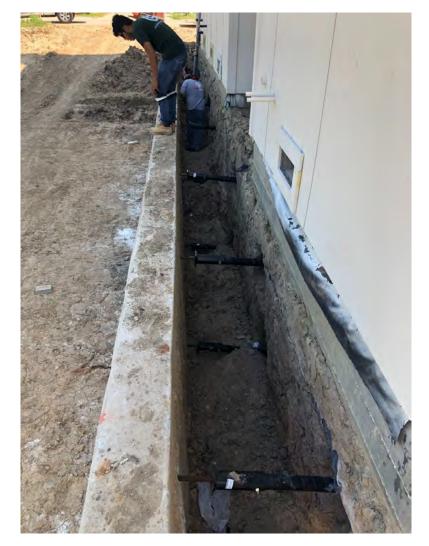

Phoenix, AZ

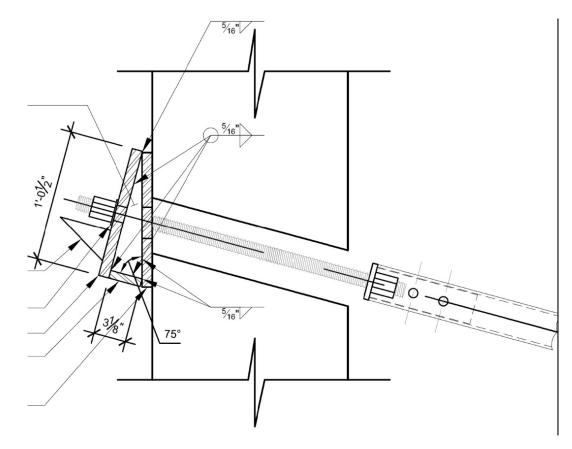
- All the piles on the exterior wall had to be installed on the interior.
- A strong-back attached to helical anchors was designed to counter act the torsional moment in this situation.
- The underpinning work was completed in 5 days.

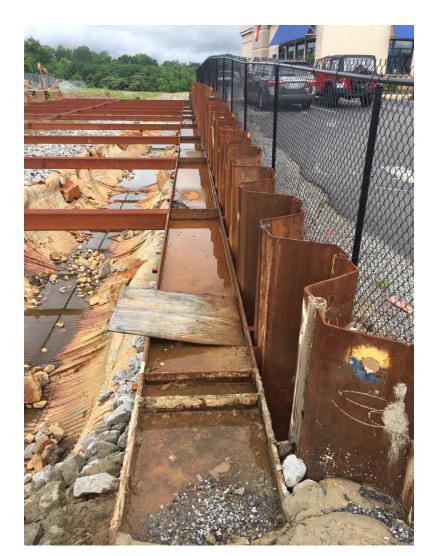


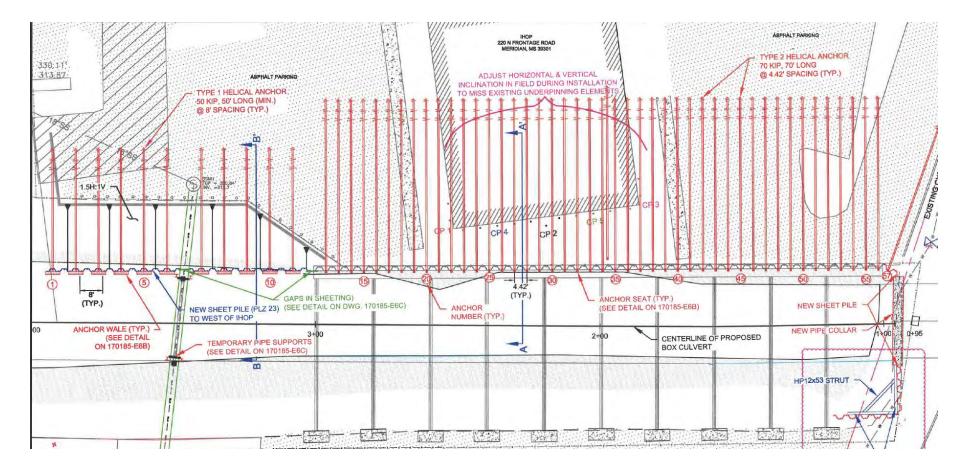
Titan Retaining Wall

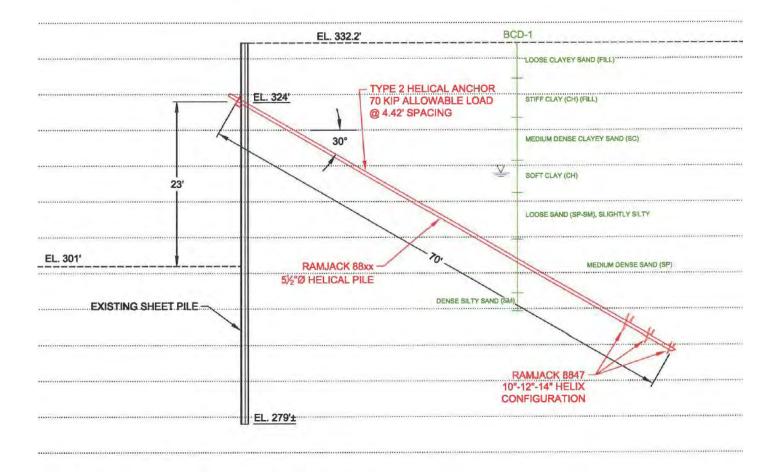
Houston, TX











Approved Continuing Education

Questions and Answers with:

Dr. Ranjith (Sam) Rosenberk, Ph.D., P.E. Vice President Fortified Engineering Solutions, LLC

Todd Danielson Editorial Director Informed Infrastructure

If you are viewing the webcast LIVE, you may now download the Certificate of Completion by clicking the AIA button at the bottom of the console

If you are viewing the ARCHIVE, you must take and pass the quiz below this video to obtain a Certificate of Completion

Approved Continuing Education

INFORMED INFORMED INFRASTRUCTURE The magazine for civil & structural engineers

Check out www.informedinfrastructure.com/v1education to view other accredited webcasts.

Thank You for Attending